TOSHIBA Photocoupler GaAlAs Ired & Photo-IC

TLP250

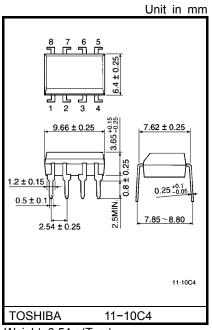
Transistor Inverter
Inverter For Air Conditioner
IGBT Gate Drive
Power MOS FET Gate Drive

The TOSHIBA TLP250 consists of a GaAlAs light emitting diode and a integrated photodetector.

This unit is 8-lead DIP package.

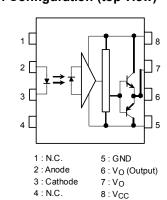
TLP250 is suitable for gate driving circuit of IGBT or power MOS FET.

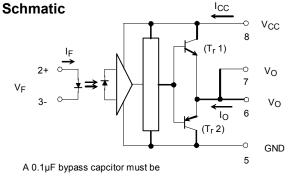
- Input threshold current: IF=5mA(max.)
- Supply current (ICC): 11mA(max.)
- Supply voltage (VCC): 10-35V
- Output current (I_O): ±1.5A (max.)
- Switching time (t_{pLH}/t_{pHL}): 0.5µs(max.)
- Isolation voltage: 2500V_{rms}(min.)
- UL recognized: UL1577, file No.E67349
- Option(D4)


VDE Approved: DIN EN60747-5-2

 $\label{eq:maximum operating Insulation Voltage : 890VpK} \\ Highest Permissible Over Voltage : 4000VpK \\$

(Note):When a EN60747-5-2 approved type is needed, Please designate "Option(D4)"


Truth Table


		Tr1	Tr2
Input LED	On	On	Off
	Off	Off	On

Weight: 0.54 g(Typ.)

Pin Configuration (top view)

connected between pin 8 and 5 (See Note 5).

Absolute Maximum Ratings (Ta = 25°C)

	Characteristic	Symbol	Rating	Unit		
	Forward current	lF	20	mA		
	Forward current derating (Ta ≥ 70°C)	ΔI _F / ΔTa	-0.36	mA / °C		
LED	Peak transient forward curent	(Note 1)	I _{FPT}	1	А	
	Reverse voltage		V_{R}	5	V	
	Junction temperature		Tj	125	°C	
	"H"peak output current (P _W ≤ 2.5μs,f ≤ 15kHz)	(Note 2)	I _{OPH}	-1.5	Α	
	"L"peak output current (P _W ≤ 2.5µs,f ≤ 15kHz)	(Note 2)	I _{OPL}	+1.5	Α	
	Output voltage	(Ta ≤ 70°C)	Vo	35	V	
ector	Output voltage	(Ta = 85°C)	٧٥	24	V	
	Supply voltage	(Ta ≤ 70°C)	Vcc	35	V	
	Supply voltage	(Ta = 85°C)	v.C.C.	24	V	
	Output voltage derating (Ta ≥ 70°C)	ΔV _O / ΔTa	-0.73	V/°C		
	Supply voltage derating (Ta ≥ 70°C)		ΔV_{CC} / ΔTa	-0.73	V/°C	
	Junction temperature	Tj	125	°C		
Oper	ating frequency	f	25	kHz		
Oper	ating temperature range	T _{opr}	-20~85	°C		
Stora	ge temperature range	T _{stg}	-55~125	°C		
Lead	soldering temperature (10 s)	T _{sol}	260	°C		
Isolat	tion voltage (AC, 1 min., R.H.≤ 60%)	BVS	2500	Vrms		

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: Pulse width $P_W \le 1\mu s$, 300pps

Note 2: Exporenential waveform

Note 3: Exporenential wavefom, $I_{OPH} \le -1.0A(\le 2.5 \mu s)$, $I_{OPL} \le +1.0A(\le 2.5 \mu s)$

Note 4: Device considerd a two terminal device: Pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.

Note 5: A ceramic capacitor(0.1µF) should be connected from pin 8 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching proparty. The total lead length between capacitor and coupler should not exceed 1cm.

Recommended Operating Conditions

Characteristic		Symbol	Min	Тур.	Max		Unit	
Input current, on	(Note6)	I _{F(ON)}	7	8	1	10		
Input voltage, off		V _{F(OFF)}	0		0.8		V	
Supply voltage		V _{CC}	15		30	20	V	
Peak output current		I _{OPH} /I _{OPL}	ı		±0.5		Α	
Operating temperature		T _{opr}	-20	25	70	85	°C	

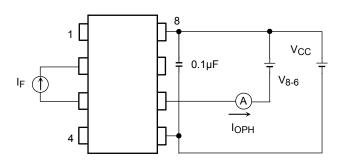
Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

Note 6: Input signal rise time(fall time)<0.5 μ s.

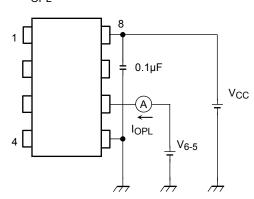
2 2007-10-01

Electrical Characteristics (Ta = $-20\sim70$ °C, unless otherwise specified)

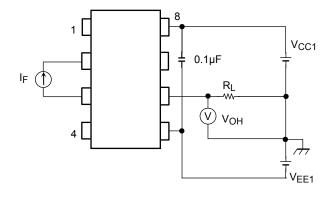
Characteristic		Symbol	Test Cir– cuit	Test Condition	Min	Typ.*	Max	Unit	
Input forward voltage		V _F	_	I _F = 10 mA , Ta = 25°C	_	1.6	1.8	V	
Temperature coeffici forward voltage	ent of	ΔV _F / ΔTa	_	I _F = 10 mA	_	-2.0	_	mV / °C	
Input reverse current	:	I _R	_	V _R = 5V, Ta = 25°C	_	_	10	μА	
Input capacitance		C _T	_	V = 0 , f = 1MHz , Ta = 25°	C —	45	250	pF	
Output current	"H" level	I _{OPH}	1	$V_{CC} = 30V$ $I_{F} = 10 \text{ mA}$ $V_{8-6} = 4V$	-0.5	-1.5	_	A	
Output current	"L" level	I _{OPL}	2	(*1)	0.5	2		A	
Output voltage	"H" level	V _{OH}	3	V_{CC1} = +15V, V_{EE1} = -15V R_L = 200 Ω , I_F = 5mA	-15V 11 12.8 —		V		
Output voltage	"L" level	V _{OL}	4	V_{CC1} = +15V, V_{EE1} = -15V R_L = 200 Ω , V_F = 0.8V	_	-14.2	-12.5	v	
	"H" level	Іссн	_	V _{CC} = 30V, I _F = 10mA Ta = 25°C	_	7	_	- mA	
Supply current				V _{CC} = 30V, I _F = 10mA	_	_	11		
опрыу синен	"L" level	IccL	_	V _{CC} = 30V, I _F = 0mA Ta = 25°C	_	7.5	_	IIIA	
				V _{CC} = 30V, I _F = 0mA	_	_	11	1	
Threshold input current	"Output L→H"	I _{FLH}	_	$V_{CC1} = +15V, V_{EE1} = -15V$ $R_L = 200\Omega, V_O > 0V$	_	1.2	5	mA	
Threshold input voltage	"Output H→L"	V_{FHL}	_	V _{CC1} = +15V, V _{EE1} = -15V R _L = 200Ω, V _O < 0V	0.8	_	_	V	
Supply voltage		V _{CC}	_		10	_	35	V	
Capacitance (input–output)		Cs	_	V _S = 0 , f = 1MHz Ta = 25°C	_	1.0	2.0	pF	
Resistance(input-output)		R _S	_	V _S = 500V , Ta = 25°C R.H.≤ 60%	1×10 ¹²	10 ¹⁴	_	Ω	

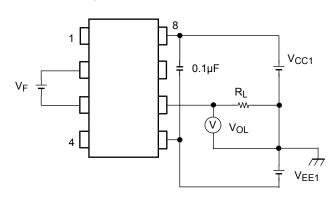

^{*} All typical values are at Ta = 25° C (*1): Duration of I_O time $\leq 50\mu$ s

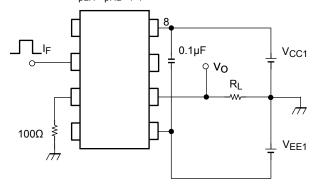
Switching Characteristics (Ta = $-20\sim70$ °C, unless otherwise specified)

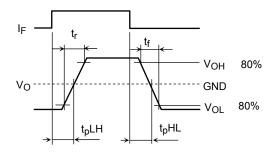

Characteristic		Symbol	Test Cir– cuit	Test Condition	Min	Typ.*	Max	Unit
Propagation delay time	L→H	t _{pLH}		I _F = 8mA V _{CC1} = +15V, V _{FF1} = -15V	_	0.15	0.5	
	H→L	t _{pHL}			_	0.15	0.5	
Output rise time Output fall time		t _r	5	$R_L = 200\Omega$	_	_	_	μs
		t _f			_	_	_	
Common mode transient immunity at high level CMH output		9	V _{CM} = 600V, I _F = 8mA V _{CC} = 30V, Ta = 25°C	-5000	_	_	V / µs	
Common mode transient immunity at low level C _{ML} output			V _{CM} = 600V, I _F = 0mA V _{CC} = 30V, Ta = 25°C	5000	_	_	V / µs	

All typical values are at Ta = 25°C

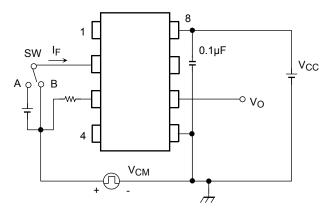

Test Circuit 1 : IOPH

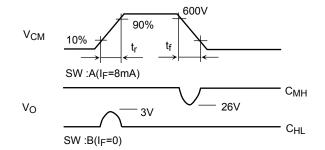

Test Circuit 2 : IOPL


Test Circuit 3 : V_{OH}

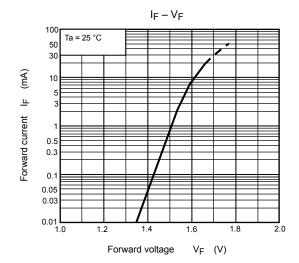


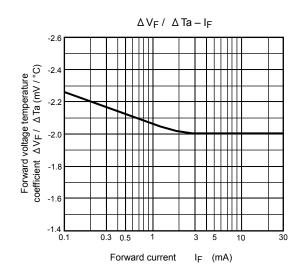
Test Circuit 4 : V_{OL}

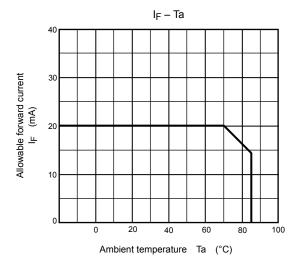



Test Circuit 5: t_{pLH}, t_{pHL}, t_r t_f

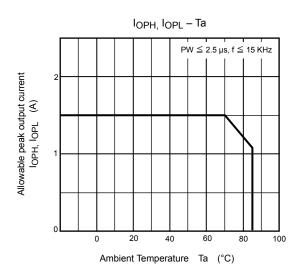
Test Circuit 6: C_{MH}, C_{ML}






$$\begin{split} C_{ML} &= \frac{480 \; (\text{V})}{t_{r} \; (\text{µs})} \\ C_{MH} &= \frac{480 \; (\text{V})}{t_{f} \; (\text{µs})} \end{split}$$


 $C_{ML}(C_{MH})$ is the maximum rate of rise (fall) of the common mode voltage that can be sustained with the output voltage in the low (high) state.


5

6 2007-10-01

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.